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Abstract—The deregulated electricity market calls for robust
optimal power flow (OPF) tools that can provide a) deterministic
convergence; b) accurate computation of nodal prices; c) support
of both smooth and nonsmooth costing of a variety of resources
and services, such as real energy, reactive energy, voltages support,
etc.; d) full active and reactive power flow modeling of large-scale
systems; and e) satisfactory worst-case performance that meets
the real-time dispatching requirement. Most prior research on
OPF has focused on performance issues in the context of regulated
systems, without giving much emphasis to requirements a)-c).
This paper discusses the computational challenges brought up by
the deregulation and attempts to address them through the intro-
duction of new OPF formulations and algorithms. Trust-region-
based augmented Lagrangian method (TRALM), step-controlled
primal-dual interior point method (SCIPM), and constrained
cost variable (CCV) OPF formulation are proposed. The new
formulations and algorithms, along with several existing ones, are
tested and compared using large-scale power system models.

Index Terms—Augmented Lagrangian method, constrained cost
variable, economic dispatch, electricity market, market-based
optimal power flow, multiplier method, nonsmooth optimization,
optimal power flow, primal-dual interior point method, step-
controlled interior point method, trust region method.

I. INTRODUCTION

HE optimal power flow (OPF) problem has been one of
T the most widely studied subjects in the power system com-
munity since Carpentier first published the concept in 1962 [1].
Over the years, researchers have examined various algorithmic
techniques that seek to speed up the OPF computation. Refer-
ences [2]-[6] captured most of the work done in the 1970s and
the 1980s, a time when several constrained optimization tech-
niques such as Lagrange multiplier methods, penalty function
methods, and sequential quadratic programming, coupled with
gradient methods and Newton methods for unconstrained opti-
mization, emerged as the leading nonlinear programming (NLP)
algorithms for solving AC OPFs. In recent years, algorithms
based on the primal-dual interior point method (PDIPM) have
gained popularity [7]-[13].
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Despite the advancements being made, the full AC OPF has
not been widely adopted in real-time operations of large-scale
power systems. Instead, system operators often use simplified
OPF tools that are based on linear programming (LP) and de-
coupled (DC) system models [14]. Historically, this is mainly
due to the lack of powerful computer hardware and efficient AC
OPF algorithms. With the advent of fast low-cost computers,
however, speed has now become a secondary concern, after al-
gorithm robustness. The remaining prevalent argument for using
LP-based DC OPF instead of NLP-based AC OPF is that LP al-
gorithms are deterministic and always yield solutions, albeit not
necessarily the desired ones, while NLP algorithms are less ro-
bust and often experience convergence problems.

The emergence of deregulated electricity markets poses new
challenges to the solution of the OPF problem. Unlike in the reg-
ulated system, where the goal of computing the OPF is merely
minimizing the smooth quadratic cost of real energy production,
OPF computation is now part of the core pricing mechanism for
electricity trading in deregulated markets, where real energy, re-
active energy, voltage support, and other system resources and
services can all be traded in discrete bids and offers [14]-[16]. In
order to meet their legal obligations of providing timely market
settlements and to ensure market fairness and efficiency, inde-
pendent system operators (ISOs) must adopt OPF tools that pro-
vide a) deterministic convergence; b) accurate computation of
nodal prices; c) support of both smooth and nonsmooth costing
of a variety of resources and services, such as real energy, re-
active energy, voltage support, etc.; d) full active and reactive
power flow modeling of large-scale systems; and e) satisfactory
worst-case performance that meets the real-time dispatching re-
quirement. Most prior research on OPF has focused on perfor-
mance issues in the context of regulated systems, without giving
much emphasis to requirements a)—c).

In this paper, we look into the computational challenges
brought up by the deregulation and seek to address them
through new algorithms and new OPF formulations. Three
separate techniques, namely, trust-region based augmented
Lagrangian method (TRALM), step-controlled primal-dual
interior point method (SCIPM), and constrained cost vari-
able (CCV) OPF formulation, are proposed here for reliable
and efficient computation of large-scale market-based OPFs.
TRALM integrates the well-proven penalty and augmented
Lagrangian method [21] with the trust-region unconstrained op-
timization technique [17]-[21] to achieve algorithm robustness.
SCIPM amends the popular primal-dual interior point method
with a step control procedure to enhance the convergence of
market-based OPF computation. TRALM is more theoretically
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rigid, but in terms of computational performance, SCIPM is
better for real-time applications. CCV is an alternative OPF
formulation that we propose to improve the scalability of
market-based OPF computation. It embeds market-induced
piecewise cost functions into inequality constraints as opposed
to the objective function. Section II of this paper presents the
classical AC OPF formulation and defines metrics that will be
used for accuracy comparisons of various methods. TRALM
and SCIPM are then introduced in Section III. Section IV
discusses two alternative OPF formulations, including the
newly proposed CCV. In Section V, we show numerical results
and compare OPF algorithms and formulations using several
different power system models. This paper is then concluded
in Section VL

II. PROBLEM FORMULATION

The classical AC OPF formulation can be written as

S C(P,Q,V,0) (la)
s.t. FA;(P,V,0)=0; FR;,(Q,V,0)=0 (1b)
Pin < P < PR Qe < <QIP (o)
V;mingv; S‘/imax (ld)
|SFR(V,0)) < (Sp)° (1e)

|ST3(V, 0)|* < (Sp)? (1)
e[17Nbus];j€[LNgen];ke[LNline] (lg)

where (la) is the objective function representing the system
cost, (1b) includes the nodal real and reactive power balancing
equations, (1c) and (1d) are the constraints on generations
and bus voltages, and (le) and (1f) are squared branch flow
constraints. Bounds in inequality constraints (lc)—(1f) are
typically supplied by unit commitment and security analysis
tools in real-time system operations. In this study, we choose
to use the default bounds that come with our sample power
system data. Changes in price-sensitive loads, transformer taps,
and switching shunt capacitors are not modeled in this work
but can be accommodated through additional control variables.
The Lagrangian of (1) is written as

+ ppy (P = P™ + Zpy) + pp_(P™" — P+ Zp_)

+(Q = Q™ + Zoi) + 1 (Q™" ~ Q + Zg-)

(V= Ve Ze YL (VPR V4 Zy )
ik (ISEVO = (572 + Zsr )

+ 1%y (ISTV.O) = (572 + Zsr ) @

where Z’s are slack variables and \’s and p’s are the Lagrange
multipliers that are used in the market to price various kinds of
electricity transactions. For example, Ap 4 is the vector of real-
energy nodal prices. Given the exact or a benchmark solution of
the first-order and second-order Karush—Kuhn-Tucker (KKT)
conditions of (2)

* * * %k *
(C*, P, Q" V* 0" Npa Ry P+ 0t V£ SF.ST)
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Fig. 1. Example discrete price-power curve for market-based OPF.

and a solution generated by a new OPF tool under study

(C,P,Q,V,0,\ra FR, lP+,Q+,V+,SF,ST)

we can use the following metrics to verify the legitimacy of the
new tool:

b¢ = max (|C - C*|/ (1+]C7))) (3a)
§x = max ( (P*+e)) 7 (P=PY)|

[+t v -y ) av
8y = max( [(Nea+ )] (Apa — A}A)]w

[N+l ™ (Crn =i ) GO
b = maX( (s + e)] - (upi - /G‘vi)‘

‘ NQ:i:+e MQi—uQi ’

| [+ 0)] ™" v = rivs) |

‘ wir + )] (usr — NSF)LO

[z + ™ (s —n5r)| ). G)

In (3), e is the unitary vector and the [. ..] operator diagonalizes
the enclosed vector. Small §’s indicate good solutions.
Traditionally, when optimizing the operation of a regulated
power system, the objective function in (1) takes a simple
smooth quadratic form. The electricity market, however, does
not use quadratic cost because it does not cognitively match
how market participants want to trade in the real world. Instead,
non-differentiable piecewise cost based on offers and bids is
adopted for better pricing transparency and flexibility. In this
case, assuming only real energy cost is considered, the objective
function can be written as
o)

Cc(P) = Z {r;-"/ (Pj - d;."’*l) —|—Z [7]
“)

J
m e {t|]l <t < NBj,dj

where 7’s represent offer prices, d’s are the real power output

levels at various breakpoints on the piecewise price curve (dg =

0), N B is the number of real power blocks offered to the market

from a given generator, and m/ is by definition the block index

that satisfies d;-”’_l < P < d}”/. Fig. 1 illustrates an example

< Pj}
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Fig. 2. Trigonometric smoothing of a discrete price-power curve.

price-power curve with four offer blocks. Costs for reactive en-
ergy, voltages, and other more complex resources and services
can take similar forms.

These new piecewise cost functions presented in market-
based OPFs bring computational difficulties. Existing NLP-
based OPF algorithms such as PDIPM, in pursuing good
performance, often take bold steps in updating trial solutions
from iteration to iteration. When solving market-based OPF’s
in the form of (1) with non-differentiable piecewise objective
functions like (4), these algorithms either break down or yield
erroneous multipliers, because derivatives of the Lagrangian
rise and fall abruptly around breakpoints of the underlying cost
curves and destroy strong convergence properties. In the next
two sections, we seek to address this issue with alternative
algorithms and OPF formulations.

III. ALTERNATIVE NLP-BASED OPF ALGORITHMS

For second-order NLP algorithms to work, we first need to
smooth the objective function of the market-based OPF so that it
can be differentiated. Let the price r be a piecewise linear func-
tion of the real power d as shown in (4) and Fig. 1, the smoothed
price-power function 7’ and the corresponding objective func-
tion can be expressed as

P;
cP)=% / ! (z)da (5a)
70
r(d)y=11 — 1™ cos [w (d—d™) / (d —d™)]
if d”" <d<d?, r(d),otherwise
rp = l(rm+1:i:rm); dIEdm—a(dm—dmil) (5b)

2
where m € [1, NB;) and « is a positive number that controls
the precision of the approximation. Fig. 2 shows a smoothed

price-power curve along with its unmodified counterpart. Other
piecewise costs can be smoothed in similar fashions.

A. Trust-Region Based Augmented Lagrangian Method

The augmented Lagrangian method (ALM) [21] solves a
generic optimization problem

min
X

f(X)

st. H(X)=0; G(X)<0 (6)

1187

by converting it into a sequence of unconstrained optimization
problems with penalty terms

min LFX) = f(X)+ (\HTH(X) + %H(X)T[W’“]H(X)

+> ﬁ {(InaX 1k + UFG,(X),0])" - (/‘5)2} - D

i=1
In (7), ni is the number of inequality constraints, \* and y/* are
trial Lagrange multipliers, and W* and U* are penalty parame-
ters. In the so-called “multiplier method,” \*, y*, W*, and U*
are updated after each round of unconstrained optimization

)\k-‘rl :)\k 4 [Wk]H(Xk)

/1,5-1—1 = max{u;‘f “+ U]’»"Gj(Xk),O}

_ {ﬂwwf if [Hj(X®)| > yw |Hj(Xk1)|}
Wk if |Hy(XF)| < yw [Hj(XP1)|

h — {ﬂUUJk if Gj(X*) > ’YUGj(Xkl)} ®)

UF if Gi(X*) < uGi(XF1)
where X* is the solution of (7), 0 < Yw, yu < 1, and Bw,
Bu > 1. Convergence is achieved when

||VxLx(Xk)|| Sé‘k
IASFE = D5/ (L4 [[]AF]|oo) <en
<eu

[ VACE 3 7 [) ©
are satisfied. In (9), the ¢’s are the tolerance parameters and
e decreases to a near-zero value £ as the suboptimization
number k increases. Combined with a suitable unconstrained
optimization algorithm, the augmented Lagrangian method can
solve large-scale nonlinear constrained optimization problems
very reliably and generate accurate Lagrangian multipliers.

In the TRALM algorithm, we use a trust-region method to
solve (7). Trust-region methods represent a category of globally
convergent unconstrained optimization algorithms [17]-[21].
Compared to the Newton’s method, which was widely adopted
in earlier OPF algorithms, trust-region methods are more robust
in handling large-scale systems with indefinite starting points.
Fundamentally, trust-region methods form and solve a sequence
of simpler optimization problems within “trust regions” (the
neighborhoods where the approximations remain valid) along
the path that leads to the optimum. The pseudo code for the
trust-region method adopted in TRALM is shown in Fig. 3,
where A is set according to [20] and X is the X* solved in
the previous TRALM iteration. When solving the OPF with
non-differentiable piecewise cost using TRALM, the difficulty
resulting from abrupt changes of derivatives, as mentioned
in Section II, is successfully mitigated by the automatic trust
region sizing procedure. Large disruptive trial steps crossing
breakpoints would result in small p’s and hence get rejected
and trigger the reduction of the trust-region size A.

Coleman et al. proposed a two-dimensional trust-region
method for solving large-scale optimization problems [19],
[20]. In their method, the trust region formed by //S// < Ain
Fig. 3 is replaced with a two-dimensional region that spans the
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Let 0<7<n<1,0<y, <1<y,, A, >0,
and X, begiven,? < 0
while |V, L(X,)| > & do

w,(S)=V L(X,) TS+%STV§(L(X,)S

S, = S
sarg slﬁlinA v, (S)
, - L +S)- LX)
t v (S,)
ifp, >7,X,, < X, +S,else X, < X, endif

t+1 t+1

if p, <7, A, <nlS,|
else if p, >7mand || S, [[=4,, A, « 14,
else A, < A, endif

t+1

te—t+1

enddo

Fig. 3. Pseudo code for the trust-region method adopted in TRALM.

gradient direction and the direction generated by the modified
PCG or Cholesky procedure. Our experiments show, however,
that neither the PCG nor the Cholesky variation of this 2-D
trust-region method is capable of solving large-scale OPFs.

To solve the subproblem in Fig. 3, we use the algorithm doc-
umented in [18], which is essentially a Newton’s procedure ap-
plied to solve for « in

I
NI =R, ~ TSl ~

S(a) = — (VXL(X;) + o) ' VLX) (10)

where o > 0 and V% L(X;) + o is positive definite.

B. Step-Controlled Primal-Dual Interior Point Method

The primal-dual interior point method (PDIPM) and its many
variations have become the algorithms of choice for solving
OPFs over the past decade [7]-[13]. Given an optimization
problem in the form of (6), PDIPM formulates the Lagrangian
with barrier functions as

DX, Z A ) = F(X) + ATH(X)

+uT (G(X (11)

— v In(Z;)
j=1
and uses the Newton’s method to solve the KKT conditions

VL (X, Z,\ 1) =0
G(X)+Z =0;

H(X)=0

WlZ —ye=0  (12)
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Fig. 4. Comparison of PDIPM and SCIPM in solving an 118-bus OPF with
three-block piecewise linear cost.

where Z, u, and vy are strictly positive. Each Newton step in-
volves the solution of a reduced system of (12)

AZ = -G(X)—-Z - VGX)TAX
Ap=—p+[Z]" (ve ~ [u]AZ)

M VH(X
water "0 |[53] = atv]

M = Vi L'(X, Z,\ ) + VG(X)[u][2] 7 VG(X)T
N = VxL'(X, Z, A 1) + VG(X)[Z]7 (W G(X) +e).
(13)

The variables (including y) are updated according to

ay = i (€ agin (-2,/22),1)

g = min <§ Arﬁ}go(—uj/Auj), 1)
X —X+o,AX 7 — Z4+a,AZ
A= AagAA; = ptoagApsy — o(p’ Z) /ni (14)

where ¢ and o are constants that are typically set to 0.99995 and
0.1, respectively, in experiments.

Although PDIPM fits nicely with traditional OPFs that use
smooth polynomial cost, we cannot count on it to solve market-
based OPFs in the form of (1) with non-differentiable piece-
wise cost like (4), as demonstrated in the 118-bus OPF example
shown in Fig. 4. When dealing with piecewise cost, the gradient
and Hessian variables used in (12) and (13) change drastically
from iteration to iteration. This causes a loss of the strong de-
scending property of Newton steps.

The SCIPM algorithm shown in Fig. 5 overcomes this diffi-
culty by monitoring the accuracy of the quadratic approximation
of the Lagrangian during the OPF computation and shortening
the Newton step if any sudden change of derivative results in
an inaccurate approximation. Empirically, it is more efficient
to start applying such step control procedure after the normal
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Let 0<x<1,0<n<<],0<e<<1,

Xy,Zy, Ay, 1,,and y,be given,

7
L =L"(X,,Z,,A,,.4,)
_ T 1 T o2
v, (AX,)=(V,L,) AX:""E(AXt) (VyL,)AX,

L'(X, +AX,,Z,, A, 1) - L,

P (AX,) =
o v (AX,)
max( max[G;(X,)], [| H(X,)l.)
1<j<ni
feond, =
1+ max(|| 4, ll., | 4 Il.)
_ IVxLZ |l
geond, =
1+ max(|| 4, [l I 4, |I..)
T
_ M Z
ccond, =————
I+ X, .
_ /&) -f&X )l
ocond, =
I+ fX Dl

scipm « false
while V cond € ( fcond,, gcond, ,ccond, ,ocond,) > & do
compute (AX,,AZ,,AA,,Au,) according to (13)
if scipm=true
while p,(AX,)<1-7 or p,(AX,)>1+1 do
AX, <« KkAX;AZ, < KAZ,;
Ad, — KA Ap, — KAl
enddo
end if
compute (X 1,2, 15 A1 B> Vo) from
(X,,2,,4,,1,,7,) and
(AX,,AZ,,A,,Au,) according to (14)

if feond,,, = fcond, and gcond,,, = gcond,
scipm < true
end if
te—t+1
enddo

Fig. 5. Pseudo code for the step-controlled primal-dual interior point method.

PDIPM step fails to improve the gradient condition or the fea-
sibility condition. Although Fig. 5 uses PDIPM as the baseline
algorithm, the same step control concept applies to other inte-
rior point methods as well. As shown in Fig. 4, with step adjust-
ments, SCIPM is able to reduce both system cost and gradients
continuously.
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TABLE I
EIGHT CATEGORIES OF CLASS-5 COMPOSITE NONSMOOTH OPTIMIZATION
PROBLEMS CLASSIFIED ACCORDING TO THE THREE TESTS ON CONVEXITY,
PIECEWISE LINEARITY, AND MINIMAX CONFORMITY

Category Test 1 Test 2 Test 3
1 Yes Yes Yes
2 (Phantom) Yes Yes No
3 Yes No Yes
4 Yes No No
5 (Phantom) No Yes Yes
6 No Yes No
7 No No Yes
8 No No No

IV. ALTERNATIVE OPF FORMULATIONS

The problem in (1) with non-differentiable costs is essentially
a Class-5 composite nonsmooth optimization problem [22]. We
can divide this type of problems into the eight categories listed
in Table I according to the following three tests:

1) whether the piecewise functions are strictly convex;

2) whether the piecewise functions are linear;

3) whether the problem is in a minimax form.
A Class-5 problem is a minimax problem if it is in the form of

n}}_n f(X)= max fi(X)

1=

15)

.....

where each f; is a smooth function. It is easy to see that, if
a Class-5 problem passes Test 2, it would either pass both of
the other two tests or fail both. Therefore, Categories 2 and 5
are phantom categories that do not need further considerations.
Some problems in Table I do not present in today’s market op-
erations but may arise in the future when we embrace more flex-
ible costings.

To solve the problems in Table I, one can take the algorithmic
approaches introduced in Section III and apply global opti-
mization techniques if necessary. Alternatively, for OPFs that
fall into certain categories, the difficulty with non-differentiable
piecewise cost may also be overcome by changing the problem
formulation.

A. Decoupled Power Offers and Bids (DPOB) Formulation

In this formulation, which was adopted in [12] and [13], each
block of generation offer or load bid presented on the original
piecewise price curves is treated as the product of an indepen-
dent generator or load unit and gets assigned a separate con-
trol variable. A given physical unit’s contribution to the objec-
tive function therefore turns into the aggregate cost of several
smoothly priced resources from smaller virtual units. Deriva-
tives of the Lagrangian in turn become continuous in the higher-
dimensional feasible region.

As indicted in [12], DPOB originates from separable pro-
gramming [23]. This technique works well for problems from
Categories 1, 3, and 4, whose piecewise functions are convex,
like the ones shown in Fig. 1.

B. Constrained Cost Variables (CCV) Formulation

For problems from Categories 1, 3, and 7, which are in min-
imax forms, constrained cost variables can be introduced to turn
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Fig. 6. Modeling voltage cost curve using constrained cost variables.

the nonsmooth optimization problems into smooth ones [24].
To the best of our knowledge, this method has not been ap-
plied to the solution of OPFs in the past. In CCV, each piece-
wise function in the objective is replaced with a helper variable.
Several accompanying inequality constraints, one for each piece
of the piecewise function, are then placed on that variable. The
new constraints build a convex basin equivalent to requiring the
helper cost variable to lie in the epigraph of the cost curve. A
simple term summating all helper cost variables replaces piece-
wise cost terms in the original objective function. When the new
objective function is minimized, helper cost variables will be
pushed against basins. Fig. 6 illustrates the CCV concept for a
piecewise voltage cost curve. In this example, y; is the helper
cost variable that replaces the piecewise cost term related to
the voltage V; in the objective function. The four accompanying
constraints are

mi,,,(V,;—V,;q,)—i-C’,;”—yq; <0 forv=1,...,4 (16)
where m;,,’s are slopes of the four cost curve segments. The new
objective function is written as

where C” abstracts other cost terms.

Like DPOB, CCV overcomes the difficulty of disruptive La-
grange derivatives by extending the optimization into a higher
dimensional space and counting on good constrained optimiza-
tion techniques such as PDIPM to solve the transformed smooth
optimization problem.

V. NUMERICAL RESULTS

We tested the new OPF formulations and algorithms using
several power system models that are summarized in Table II.
Tests were run on a PC with Intel 3.3 GHz P4 processor (2
MB L2 cache), 2 GB memory, and Linux 2.6.9 kernel. All opti-
mization programs and underlying linear algebra functions, ex-
cept the LU and Cholesky factorization modules, were devel-
oped in house using Standard C and compiled using the GCC
3.4.4 compiler. LU and Cholesky factorizations were done using
the UFsparse package [25]. The parameters used in PDIPM,
TRALM, SCIPM, and cost-curve smoothing, unless stated oth-
erwise, were set according to Table III. All experiments use flat
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TABLE II

SUMMARY OF POWER SYSTEM MODELS USED IN THE STUDY

System Buses Generators Branches Load (MW)
1 30 6 41 189
2 57 7 30 1,250
3 118 54 186 4,242
4 300 69 411 23,525
5 2383 327 2896 24,558
6 2935 956 7028 394,794
TABLE III

PARAMETERS USED IN PDIPM, TRALM, SCIPM, AND TRIGONOMETRIC
SMOOTHING OF PIECEWISE LINEAR COST CURVES

NB =3, a=0.04
TRALM PDIPM/SCIPM
& 5e-3 | 1 025 | « 05| 7 1.0
& le-1 n 0.75 n 0.1 Ao 0.0
& 2¢0 | 0.1 | ¢ le-5 | uo 1.0
& le-2 | 7 20| X, flat start | 7, 1.0
Bwu=3 yw.v=0.33 &=0.99995 o 0.1
TABLE IV

COMPARISON OF EXECUTION TIME (seconds) AND NUMBERS OF ITERATIONS

(SHOWN IN PARENTHESIS) OF FOUR ALGORITHMS IN SOLVING OPFs

Solving OPF’s with Quadratic Costs

System MINOS PDIPM TRALM SCIPM
1 0.06 (350) 0.05 (13) 0.20 (134) 0.07 (13)
2 0.07 (179) 0.11 (14) 0.40 (146) 0.17 (17)
3 1.2 (1579) 0.37 (21) 2.3 (441) 0.57 (24)
4 6.3 (3654) 1.2 (29) 4.8 (420) 1.3(24)
5 FAIL 12 (33) 168 (1834) 14 (33)
6 FAIL 22 (34) 680 (2842) 26 (34)

Solving OPF’s with Piecewise Costs

System MINOS PDIPM TRALM SCIPM
1 0.04 (163) 0.66 (171) 0.34 (221) 0.15 (26)
2 0.07 (184) 0.93 (126) 0.40 (171) 0.47 (45)
3 0.9 (1190) FAIL 3.7 (698) 1.9 (77)
4 3.8 (2002) 27 (689) 6.7 (544) 4.0 (72)
5 FAIL FAIL 202 (2193) 54 (122)
6 FAIL FAIL 1011 (4310) [ 161 (204)

starting points, i.e., unit voltages, zero phase angles, and gen-
erator outputs at the midpoints between maximum generations
and minimum generations. Offers and bids for energy and volt-
ages were randomly generated.

At the time of writing, we are not able to find an appropriate
production-quality OPF tool with which to compare our new
formulations and algorithms. (The lack of a robust commercial
AC OPF tool has been a major hurdle for the market to institute
advanced options of trading ancillary services such as reactive
power [16].) Instead, comparisons are made among the different
formulations and algorithms presented in this paper and against
the MINOS used in MATPOWER [26], [27] and our own im-
plementation of PDIPM.

A. Convergence and Performance

Table IV lists the performance comparison of four algorithms
in computing classically formulated OPFs. TRALM and SCIPM
converged in all cases, while MINOS failed to solve large-scale
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TABLE V
COMPARISON OF EXECUTION TIME (seconds) AND NUMBERS OF ITERATIONS
(SHOWN IN PARENTHESIS) OF SOLVING DIFFERENTLY FORMULATED OPFs

OPF’s with Convex Piecewise Linear Costs

System | Classical-SCIPM | DPOB-PDIPM | CCV-PDIPM
1 0.15 (26) 0.06 (13) 0.06 (15)
2 0.47 (45) 0.11 (13) 0.17 (22)
3 1.9 (77) 0.39 (19) 1.9 (109)
4 4.0(72) 1.3 (30) 1.2(28)
5 54 (122) 13 (35) 15 (43)
6 161 (204) 32 (47) 49 (78)
TABLE VI

ACCURACIES OF OPF SOLUTIONS COMPUTED BY DIFFERENT ALGORITHMS
(300-Bus SYSTEM, MINOS AS THE REFERENCE)

Algorithm dc ox [ Oy
TRALM 5.2e-4 2.6e-2 1.6e-3 9.0e-3
SCIPM 5.2e-4 2.7e-2 1.6e-3 8.6e-3
DPOB-PDIPM 2.9e-7 1.3e-3 1.0e-4 3.6¢e-4
CCV-PDIPM 7.1e-5 5.4e-4 5.5e-5 8.6¢e-5

OPFs and PDIPM failed to solve market-based OPFs with piece-
wise costs. SCIPM is faster than TRALM and better suited for
real-time applications.

One theoretical pitfall of SCIPM, like that of PDIPM, is
its lack of global convergence guarantee. In [12], the authors
showed some of PDIPM’s failures and proposed an algorithm
that attempted to improve the convergence at the cost of
performance through adjustments of Hessian matrices. Our
investigation showed, however, that it is the OPF formulation
in [12], which treats all constraints as inequality constraints,
that brings numerical difficulties to PDIPM in the case of
solving large-scale OPFs. Using the formulation in (1), we
were not able to regenerate any non-converging results reported
in [12]. SCIPM, as well as PDIPM in the context of OPFs
with quadratic costs, consistently converges to desired OPF
solutions, with both the first-order and the second-order KKT
conditions satisfied. These encouraging results may imply that
the region of attraction for our particular nonlinear system is
large enough to counter occasional ill-defined Newton steps.

Table V compares three different OPF formulations in the
solution of market-based OPFs, with PDIPM or SCIPM as the
underlying algorithm. DPOP and CCV clearly provide better
performances, although the Classical-SCIPM approach has the
advantage of being extendable to solve problems in Category 8.

B. Accuracy

Table VI lists the result of a cross examination of OPF solu-
tions generated by MINOS, TRALM, SCIPM, DPOB-PDIPM,
and CCV-PDIPM. As defined in Section II, ¢, 0x, 6x, and 0,
measure the deviation of a trial OPF solution from the refer-
ence one. The small values reported in Table VI indicate that all
methods proposed are valid for computing large-scale market-
based OPFs.

The parameter v used in (5) has an impact on the accuracies
of TRALM and SCIPM’s solutions. As shown in Table VII,
smaller o’s yield more accurate solutions. In practice, 0.04 is
small enough to ensure satisfactory results.
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TABLE VII
ACCURACIES OF SEVERAL OPF SOLUTIONS COMPUTED BY SCIPM WITH
DIFFERENT o VALUES (300-BUS SYSTEM, CCV-PDIPM AS THE REFERENCE)

a 6(' 6)( 5;1 6;:
0.1 1.3e-3 4.6e-2 3.6e-3 2.4e-2
0.04 5.2e-4 2.7e-2 1.6e-3 8.6e-3
0.01 1.3e-4 6.9¢-3 4.1e-4 2.1e-3
TABLE VIII

EXECUTION TIME (seconds) AND NUMBERS OF ITERATIONS TAKEN TO SOLVE
THE 2935-BUs OPF WITH DIFFERENT N B VALUES

SCIPM
NB # Its. Time NB # Its. Time
3 204 161 4 218 173
5 217 172 6 263 210
7 323 263 8 344 278
9 362 292 10 402 328
DPOB-PDIPM
NB # Its. Time NB # Its. Time
3 47 32 4 48 33
5 46 33 6 48 35
7 47 35 8 45 35
9 46 36 10 46 37
CCV-PDIPM
NB # Its. Time NB # Its. Time
3 78 49 4 98 61
5 72 46 6 98 62
7 76 49 8 87 56
9 74 48 10 97 62

C. Scalability

The time taken to solve an OPF depends on both the number
of iterations taken and the computational complexity of one
single iteration. Assuming a constant transmission network den-
sity and a constant fill-in ratio for the sparse matrix factoriza-
tion, the complexities of one iteration of PDIPM, TRALM, and
SCIPM are all O(Nyys), although their underlying coefficients
are quite different. Although the exact relationship between the
system size and the number of iterations is unclear, we can iden-
tify some general trends from Tables IV and V. First of all,
the number of iterations generally rises as the system size in-
creases. Second, the rising paces for PDIPM and SCIPM are
much slower than those of MINOS and TRALM, suggesting
that SCIPM and CCV-PDIPM are more scalable and therefore
better suited for large-scale systems. Third, other system de-
tails (such as number of generators) also have an impact on the
algorithm complexity. Omitting those system-specific charac-
teristics, the overall OPF complexity can be approximated by
O(NL15), where ¢ is a small number that falls between 0.1 and
0.2 for SCIPM and CCV-PDIPM.

The number of segments contained in piecewise cost curves
also impacts the performance of second-order NLP-based OPF
algorithms. Table VIII lists the execution time and numbers of it-
erations taken by SCIPM, DPOB-PDIPM, and CCV-PDIPM to
solve the 2935-bus OPF with different NV B values. The number
of iterations taken by SCIPM grows approximately linearly with
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N B, while those by DPOB-PDIPM and CCV-PDIPM are insen-
sitive to N B. We should note that DPOB and CCV’s scalabilities
are limited to relatively small N B’s. For large N B’s, DPOB dic-
tates dense V H (X )’s and is therefore unscalable both in terms
of speed and in terms of memory requirement. CCV, on the other
hand, does not encounter such a problem, because each accom-
panying constraint that it adds to the problem only contains a
small and fixed number of variables. Depending on the under-
lying computing platform used, the extra memory required by
CCYV to accommodate new inequality constraints and helper cost
variables may or may not be anissue. All that said, we do not need
to worry about DPOB and CCV’s scalabilities for today’s elec-
tricity market operations, where [N B’s are often capped around
10~20. In the future, however, computerized fine-grain trading
could be instituted and present a challenge to the two alternative
formulations.

VI. CONCLUSIONS

In this paper, we discussed the computational challenges
posed by the electricity market and proposed three new tech-
niques (TRALM, SCIPM, and CCV) to address them. Numer-
ical studies showed that these techniques are reliable and better
than some existing ones in solving large-scale market-based
nonsmooth OPFs. DPOB-PDIPM and CCV-PDIPM are partic-
ularly good for real-time applications due to their efficiencies,
while SCIPM and TRALM can be applied to solve problems
that cannot be reformulated through DPOP or CCV. When
dealing with non-convex cost, however, the methods discussed
in this paper must be combined with global optimization
techniques, in order to achieve global optimal solutions. In
the future, we need to pay attention to DPOB and CCV’s
large memory requirements as the market embraces finer-grain
electricity trading. Future research should put more emphasis
on OPF robustness, accuracy, and scalability, in light of the
changing roles of OPF in market-oriented applications. We plan
to discuss how to integrate the new formulations and algorithms
into the security-constrained OPF in the future.
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