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Abstract

A formulation of the thermal unit commitment prob-
lem including nonlinear power flow constraints is pre-
sented, making the use of more realistic constraint mod-
els possible. It also allows potential VAr production to
be used as a criterion for the commitment of generators
in strategic locations of the network. The Lagrangian
Relazation framework and o variable duplication tech-
nigque are employed, permitting exploitation of the sepa-
ration structure of the dual cost. Some results for small
to medium-sized systems are reported.

Keywords: Thermal unit commitment, Power genera-
tion scheduling, Lagrangian relaxation.

1 Introduction

The thermal unit commitment problem, being of a
mixed—integer nature, suffers from combinatorial com-
plexity that is further compounded by the sheer size of
real life problems of this kind. Indeed, without resort-
ing to special techniques such as explotation of struc-
ture, the problem is basically unsolvable. For example,
limited—-memory dynamic programming schemes have
been tried. Unfortunately, as the number of generators
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increases, the size of the combined state space for the
dynamic programming problem grows combinatorially,
and such schemes may easily fail to include the states
that form part of the optimal solution in the dynamic
programming graph.

Lagrangian relaxation is aimed towards the exploita-
tion of the structure of the problem by achieving a spe-
cific form of separability in the the dual objective. First
introduced by Muckstadt and Koenig in [2], Lagrangian
relaxation permits decomposing the discrete on/off state
variables into subsets belonging to each generator, essen-
tially separating the combined discrete variable problem
into several independent, one-generator dynamic pro-
grams. To coordinate the solution of the overall prob-
lem, a price sharing scheme is implemented. Hence, one
trades the decomposition of the problem for having to
do many single—generator iterations that share prices up-
dated from iteration to iteration. The separability is pos-
sible thanks to the unique structure of the constraints.
To illustrate, consider this basic formulation of the unit
commitment problem:

min { F(RU)+K(U) |
(PU)eD, (P,Q,U)eS, (PRQU)eC } (1)

where
ng:  Length of the planning horizon
ng:  Number of generators to schedule
pht:  Real power output for
generator ¢ at time ¢
g"t:  Reactive power output for
generator ¢ at time ¢
ub*:  On/off status (one or zero)
for generator ¢ at time ¢
P (@),i=1l...ng,t=1...m,
Q: (¢"),i=1l...ng,t=1...m
U: (), i=1...n,¢t=1...n
F(P,U): The total production cost

K(U): The sum of any startup costs



A set of dynamic generator-wise

constraints

S: A set of static instantaneous
constraints

C: A set of nonseparable constraints

The production cost function F' is separable over each
generator and time period. The constraints of the prob-
lem have been classified into three kinds: Constraints
that are related to a single generator (but could conceiv-
ably span several time periods) are lumped together in
the set D. Examples are minimum up or down times
and ramping constraints. Constraints that span the
complete system but involve only one time period, such
as load/demand matching, voltage limits, reserve con-
straints and generation upper/lower limits, are classified
as S-type constraints. Finally, C is the set of constraints
that involve more than one generator and more than one
time period.

With this setup, the most basic example of the appli-
cation of the Lagrangian relaxation proceeds as follows
(see [2]): Assume that the S set involves a generation—
meets—demand (no network effects) constraint and a re-
serve constraint for each time period. The relaxation of
these constraints yields a Lagrangian

L(P,UNB) = F(PU)+Y X(Ph - Zui,tpi,t)
t=1 i=1

+ Z B(R' - Z u Pris)

=1

@

where P}, is the real power demand in period ¢ and R?
is the desired minimum total commited capacity for the
same period. One can then consider the dual objective

q(\, B) = min L(P,U, A, B) 3)
and corresponding dual problem
(a5 f) )

which can be written explicitly in the following form
after collecting terms on a per generator basis

{Z(Atpt +,6th) +

,\>0 ,B>()
Ng ng .

mm [Z Z(ul th(pz t) /\tuz t, it ﬁtuz,tp:naz) }
=1 t=1

®)

Hence, for any given A and 3, one can compute the value
of g(A,B8) by solving n, separate, single-generator dy-
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namic programs of the form
mln Z(uz tFl(pt t) }\tuz £, 4.t 6tui,tp:;mz) (6)

These dynamic programs can easily accomodate any
D-type constraint such as minimal up or down times
and any startup costs. See [4] for the details. Ramp-
rate constraints can also be introduced by discretizing
the generation range for the unit, although the size of
the state space grows considerably.

The separation structure of dual objective suggests
using a dual maximization algorithm based on subgradi-
ents (which are readily available once the dual objective
has been evaluated). The Lagrangian relaxation scheme
works fairly well in practice, and through the work of
many researchers many advances have been made in the
past 20 years. In [5], for example, refinements to the dy-
namic programming stage are made, and it is shown that
the duality gap is expected to be inversely proportional
to the number of generators: good news for large scale
problems. Other works addressed the inclusion of other
kinds of constraints, such as more sophisticated reserve
feasibility [7] and line transfer limits by means of a DC
flow model of the network [8, 10, 11, 12], and ramping
limits [9, 14].

Indeed, the trend to include more and more con-
straints relies heavily in the structure of the constraint
sets. Separability of the dual objective is achieved when
constraints that are linear in the optimization variables
are relaxed by addding them to the Lagrangian with
their respective multiplier. As long as these relaxed con-
straints are linear or sums of simple functions of single
variables, it is always possible to collect terms on a per-—
generator basis. All system-wide, pointwise in time con-
straints are natural candidates for relaxation. Unfortu-
nately, nonlinear constraints such as those governing the
AC power flow model are not separable through relax-
ation; neither are line and transformer MVA limits nor
voltage limits (because of their reliance on the AC power
flow model). Notice, though, that these constraints still
fit neatly in the category of S—type constraints. In this
paper, we describe an artifact that allows including such
constraints into the model and report the progress that
has been made in the testing and implementation of the
algorithm.

2 Unit commitment with AC
onlinear power flow

Qur approach builds on the variable duplication tech-
nique credited to Guy Cohen in [10] by Batut and Re-
naud. This is the same technique was used later by



Baldick [11] in his more general formulation of the unit
commitment problem. The main difference in our for-
mulation is that reactive power output variables are in-
cluded, so that better loss management may be per-
formed and generators that are necessary because of
their VAr output but not their real power are actually
commited. Since one of the sets of variables involved
is the solution of a power flow, voltage limits can be
included as well.

We start by defining two sets of variables, the dynamic
variables and the static ones:

Dypamic:
u»*:  Commitment status {0,1}, generator i at time ¢
d1 t:  Real power output, generator ¢ at time ¢
d’ . VAr output, generator 7 at time ¢
U: (W), i=1...n5,t=1...n4
D,: (d”),z— l...ng, t=1...m
D,: (d”),z.~1 ng, t=1...n
D: (D,,, D)
Statlc
sP’ . Real power output for generator 7 at time ¢
sys VAr output for generator i at time ¢
Sp: (s”), i=1...ng,t=1...m
Sy (s”) i=1...n5t=1...n
S: (Spa Sq)
Then the following optimization problem is defined
ny Ng
: it i gist it (0,
i 2 W EEN K@)
subject to:
(I) D-type constraints
ui,th < u‘ tdz t < ul tP:naa:’ (8)
ui,th . < uz tdz < uzt :naxi (g)
U satisfies minimal up and down times, (10)
(II) S-type constraints
0<sh* <P (11)
mzn S sl t < Qmaz’ (12)
satisfies network load flow equa-
(Sp,Sq) { tions, respecting line MVA & and  (13)
‘voltage limits
(III) and the following additional constraints
- > WP, <0, I=1...n,, t=1...n, (14)
€2,
sit—ubtdit =0, i=1...ng, t=1...n, (15)
sit —ubtdt =0, i=1...n5, t=1...n¢ (16)
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where Rt is the minimum combined capacity that is
acceptable for the Ith zone in the tth period and Z; is
the set of indices of generators in the {th zone.

We will assume that we can enforce both the D con-
straints (8-10) and the S constraints (11-13), so that
we only relax the three last constraints (14-16), which
leads to the following Lagrangian:

LU, D, A,ﬁ) =

Z Z[uz th(dz ,t + K t(uz )]
t=1 i=1

+ Z Zﬂl,t(Rl,t _ z ui’tPrinam)
t=1 I=1 i€Z;

+Zz/\zt(stt i,td;‘),t)
t=1 =1

—I—ZZ)\’t(s”hu”d‘t) (17)
t=1 =1
Ng ng
ZZ {ui,th’(d}:’,t) + Ki,t(ui,‘) _ /\;Z’,tui,td;i;t
i=1 t=1
_ ﬂz(i),tui,t Pfﬁ e — }\:'I,tui,t dfl,t}

+ Z Z(/\"ts;’t + Afl’tsfl’t)
t=1 i=1

+ Z Z ﬁl’tRl’t (18)
t=1 I=1

= Li(U, D, B) + £L2(S, ) + L3(B) (19)

where A = (AL, Abf) are multipliers on the relaxed
equalities of the two kinds of variables, G is the multi-
plier associated to the lth zone’s reserve requirement at
the tth period, and z(%) returns the index of the zone to
which generator 7 belongs.

The separation structure of the Lagrangian is obvious
upon looking at equations (18) and (19). It makes it
possible to write the dual objective as

q(>‘7 :B) (}ngns{ﬁl (U9Dv /\, ﬂ) + ‘C2(Ss A) + ‘C3 (ﬂ)}
rglll)iﬁl(U’ D7 )‘MB)

]

+ msin La2(S,A)
+ L3(6)

By looking again at (18) and (20), it can be seen that the
first term can be computed by solving n, dynamic pro-
grams again; the second term separates into n; optimal
power flow problems with all generators commited but
with special cost curves Aitsh? + Aitsit for generator
at time t. Notice that sfl" also has a price. It is assumed

(20)
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Figure 1: Constraint structure

that the solutions of the dynamic programs meet the D
constraints and that the solutions of the optimal power
flows meet the S constraints.

A graphical description of what we have just achieved
can be seen in Fig. 1. The dots represent generator out-
put variables and they are ordered in two dimensions:
time period and generator number. The upper layer of
variables are the {s}?, si*}, while the lower layer are the
{ubtdst, ubtdit}. The lines represent the connectedness
brought by different kinds of constraints; those running
parallel to the time axis involve a single generator for
all time periods ( S—type), while those parallel to the
generator index axis involve a single time period and
all generators (D-type). Finally, the vertical lines rep-
resent the linear equality constraints si* — ubtd3t = 0,
syt —ubtdit = 0. When a multiplier is attached to these
last constraints in order to relax them, they dissapear
from the structure of the dual objective, and all that re-
mains are disjoint (not connected through different kinds
of constraints) sets of variables; since costs are separable
per generator, the overall separation structure becomes
evident.

Before applying a dual maximization procedure to the
dual objective as stated, there are some issues that need
to be addressed. The first one is that the cost assigned to
the (dfl") in the dynamic programs, being simply linear,
is not strongly convex and that can cause oscillations
in the subgradient optimization procedure. Therefore,
an augmented Lagrangian technique (where quadratic
penalty functions of the relaxed equality constraints
are added to the Lagrangian) was used. However, the
crossterms now impair the separability, so the Auxiliary
Problem Principle described by G. Cohen in [3, 6] was
invoked to deal with this. For the details of this treat-
ment, see [15, 12] and the original introduction of this
technique to thermal unit commitment problems in [10].
These techniques involve linearization of the nonsepa-
rable terms about a previous iteration, modifying them
slightly to insure convergence. The resulting Lagrangian
is more complicated; after separation, it is given by

L(U,D,8,\,6,0,D,8) =
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Mg 1ng

Z S‘{ 1tF’l(dtt +K”(u”)

=1 t=1
b, by iy,
¥+ ;D z t(dz, ) quz,t(d;,t)2
+ ['—A;,’t _ cp(g;.’,t - ,ai,tci;';t) _ bpai,tci;",t] ui,td;",t

1, 30 TR gt gt it i
+ [__/\1‘,1 __cq(s;t _uztdzt) _bquztd;,t] u”dzt

+ [__ﬂz(i),tpfinal] ui,t}

ne Tg b b
+§lz{§@W+§@W
t=1i=1
[J\' 5t + cp(—zt - uz tdz,t) - ] S;,’t

?ﬂﬁ%

£33 {6+ @]
t=1 i=1
b_2§{_ [(gz,t)z + (at’,t(zz,t)2] }

ne ng
+ Z :E: ﬁl,tRl,t
t=1I=1
= L1(U,D,\,B8,U0,D,8) + £2(S,\,U,D,S)

+L3(8)

where @b, dit, dit, 53¢ and 53 are the values obtained
at the (k — l)th 1terat10n. Notice that (22) has the same
separation structure of (19). This leads to the following
Algorithm 1: AC Augmented Lagrangian relazation

+ [)\”t + cq(§"t - ﬂ"td”t) -b

+

(21)

(22)

1.k—0

2. Initialize (AL, Ab%) to the values of the multipliers
on the power flow equality constraints at generator
buses when running an OPF with all units com-
mited. Initialize (U, D, ) to zeros.

. (U, D) + argmingeagiple v,p £1(U,D,A,8,0,D,S)
by solving ny one-generator dynamic programs.

.S — arg mingaciple s £2(5) A, U,D, 5) by solving
ng OPF’s in which all generators are committed,
their generation range has been expanded to include
Pi. =0 and the special cost £2(S,\,U,D,S) is

used. Note: all tasks in steps 3 and 4 can be solved
in parallel.

. If the commitment schedule U is not in a database
of tested commitments, perform a cheap primal fea-
sibility test. If the results are not encouraging, store
the schedule in the database and label it “infeasi-
ble”, then go to 8.



Perform a more serious primal feasibility test by ac-
tually attempting to run n, OPF’s with the original
Ppin constraints. If all OPF’s are successful, store
the commitment in the database, together with the
primal cost including startup costs, and the duality
gap (the dual cost was available upon solving 3 and
4). Else label the commitment as “infeasible”, store
it in the database, and go to Step 8.

. If the duality gap is small enough, stop.

Upda._te all multipliers using subgradient techniques,
andU«—U,D«— D, S«— S, k+——k+1

. Go to Step 3.

3 Implementation details

The complete algorithm was written in MATLAB™
with some FORTRAN subroutines to improve execution
speed. The dynamic subproblems can accomodate min-
imal up or down times, warm start and cold startup
costs. The OPF solution code deals with the nonlinear
power flow equations, simple box limits on the genera-
tors’ outputs, voltage limits, line and transformer MVA
limits and polynomial cost functions of both the active
and reactive generator outputs.

In the early stages of implementation, the static sub-
problems were solved using Ray Zimmerman and De-
giang Gan’s MATLAB OPF code [16]. However, since
the proposed algorithm needs to compute n, OPF’s
every iteration in order to solve the static subprob-
lems, plus extra OPF’s in selected iterations when a
given commitment is promising, we needed a faster OPF
solver. The one outstanding property about the se-
quence of OPF’s to be solved, is that for a given time
index, the only data for the OPF that changes is the
cost, and only by a relatively small amount dictated by
the A-update. Conceivably, small changes in cost would
result in small changes in optimal dispatch, so that it
would be advantageous to use the dispatch obtained in
the previous iteration as the starting point for the cur-
rent iteration. In practice, however, we have seen that
the dispatch is fairly sensitive to price changes and even
the Newton method that we currently use to solve the
OPF problems needs several iterations to find the opti-
mum. Furthermore, as the algorithm progresses, some
of the costs reflected back to the static subproblems are
unusual in the sense that they are unlike any generator’s
physical economic data. Thus, we have found that the
OPF algorithm needs to be especially robust in light of
these unusual costs.

Our current OPF implementation is a two stage
method. The first stage is a full Newton method with
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multipliers on the equality constraints and adaptive
penalty functions on the inequality constraints. High
voltage limits (or, in their absence, the generators’ re-
active power outputs) are adaptively tightened to push
most voltages back into the feasible region; the few re-
maining outside of the limit are taken to be binding con-
straints. When equality constraints are met to some
small tolerance and voltage limits have been sufficiently
tightened to weed out false binding high voltage limits,
a guess is taken with respect to which should be the ac-
tive set and the algorithm switches to the second stage,
an active set full Newton method. When problems are
encountered, the algorithm tries to find the zeros of the
first order optimality condition equations by minimiz-
ing a sum of squares of these equations using a specially
tailored constrained Levenberg-Marquardt method.

4 Computational results

The algorithm has been tested on modified IEEE 30 and
118 bus systems. For the IEEE 30-bus system [1] with 6
generators, a planning horizon of length 6 was used. For
comparison purposes, a version of the Lagrangian relax-
ation algorithm with DC Flow-based relaxed line lim-
its was also written. The AC-based algorithm correctly
identified unit 4 as a must-run because of its ability to
provide voltage support for high load periods, even pro-
viding some price information on the MVArs that this
unit produced by means of the corresponding A;“. In
contrast, the DC flow-based algorithm failed to commit
unit 4 for any period, producing a commitment schedule
that was infeasible in light of the AC power flow con-
straints.

For the 118 bus system with 54 generators, a more
complex load variation was used, with three seven-hour
days, the two first of them being “weekdays” and the last
being “weekend”. Each “day” had low nightime loads,
average shoulder loads and twin peaks in the morning an
afternoon, with a total load variation of -50% to +40%
from nominal. Two hundred iterations were run (that is
21 - 200 = 4200 OPF’s). The solutions obtained along
the way were of better quality than the corresponding
DC power flow Lagrangian relaxation algorithm, partly
because in some time periods there were lines operating
at their limits and the AC formulation could model these
restrictions more accurately. The DC algorithm did not
have problems this time finding feasible commitments,
partly due to the large number of generators available
for dispatch in this network.
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Figure 2: Evolution of multipliers: 30 bus system.
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Future work

Ramp constraints need to be included in the formulation,
and testing of larger scale systems is planned when a
parallel processor version of the software is completed.
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